Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47.255
Filtrar
1.
Ren Fail ; 46(1): 2338933, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38616177

RESUMO

Thioredoxin-interacting protein (TXNIP) is an important regulatory protein for thioredoxin (TRX) that elicits the generation of reactive oxygen species (ROS) by inhibiting the redox function of TRX. Abundant evidence suggests that TXNIP is involved in the fibrotic process of diabetic kidney disease (DKD). However, the potential mechanism of TXNIP in DKD is not yet well understood. In this study, we found that TXNIP knockout suppressed renal fibrosis and activation of mammalian target of rapamycin complex 1 (mTORC1) and restored transcription factor EB (TFEB) and autophagy activation in diabetic kidneys. Simultaneously, TXNIP interference inhibited epithelial-to-mesenchymal transformation (EMT), collagen I and fibronectin expression, and mTORC1 activation, increased TFEB nuclear translocation, and promoted autophagy restoration in HK-2 cells exposed to high glucose (HG). Rapamycin, an inhibitor of mTORC1, increased TFEB nuclear translocation and autophagy in HK-2 cells under HG conditions. Moreover, the TFEB activators, curcumin analog C1 and trehalose, effectively restored HG-induced autophagy, and abrogated HG-induced EMT and collagen I and fibronectin expression in HK-2 cells. Taken together, these findings suggest that TXNIP deficiency ameliorates renal fibrosis by regulating mTORC1/TFEB-mediated autophagy in diabetic kidney diseases.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/etiologia , Fibronectinas , Autofagia , Colágeno Tipo I , Alvo Mecanístico do Complexo 1 de Rapamicina , Tiorredoxinas , Fibrose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas de Transporte/genética
2.
HLA ; 103(4): e15457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575368

RESUMO

NKG2D is a natural killer cell activating receptor recognising ligands on infected or tumorigenic cells, leading to their cytolysis. There are eight known genes encoding NKG2D ligands: MICA, MICB and ULBP1-6. MICA and MICB are highly polymorphic and well characterised, whilst ULBP ligands are less polymorphic and the functional implication of their diversity is not well understood. Using International HLA and Immunogenetics Workshop (IHIW) cell line DNA, we previously characterised alleles of the RAET1E gene (encoding ULBP4 proteins), including the 5' UTR promoter region and exons 1-3. We found 11 promoter haplotypes associating with alleles based on exons 1-3, revealing 19 alleles overall. The current study extends this analysis using 87 individual DNA samples from IHIW cell lines or cord blood to include RAET1E exon 4 and the 3' UTR, as polymorphism in these regions have not been previously investigated. We found two novel exon 4 polymorphisms encoding amino acid substitutions altering the transmembrane domain. An amino acid substitution at residue 233 was unique to the RAET1E*008 allele whereas the substitution at residue 237 was shared between groups of alleles. Additionally, four haplotypes were found based on 3' UTR sequences, which were unique to certain alleles or shared with allele groups based on exons 1-4 polymorphisms. Furthermore, putative microRNAs were identified that may interact with these polymorphic sites, repressing transcription and potentially affecting expression levels.


Assuntos
DNA , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Regiões 3' não Traduzidas , Alelos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Éxons/genética , Antígenos de Histocompatibilidade Classe I/genética , Proteínas de Transporte/genética , Proteínas de Membrana/metabolismo
3.
Acta Neuropathol ; 147(1): 64, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556574

RESUMO

Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder of genetic etiology, characterized by paternal deletion of genes located at chromosome 15 in 70% of cases. Two distinct genetic subtypes of PWS deletions are characterized, where type I (PWS T1) carries four extra haploinsufficient genes compared to type II (PWS T2). PWS T1 individuals display more pronounced physiological and cognitive abnormalities than PWS T2, yet the exact neuropathological mechanisms behind these differences remain unclear. Our study employed postmortem hypothalamic tissues from PWS T1 and T2 individuals, conducting transcriptomic analyses and cell-specific protein profiling in white matter, neurons, and glial cells to unravel the cellular and molecular basis of phenotypic severity in PWS sub-genotypes. In PWS T1, key pathways for cell structure, integrity, and neuronal communication are notably diminished, while glymphatic system activity is heightened compared to PWS T2. The microglial defect in PWS T1 appears to stem from gene haploinsufficiency, as global and myeloid-specific Cyfip1 haploinsufficiency in murine models demonstrated. Our findings emphasize microglial phagolysosome dysfunction and altered neural communication as crucial contributors to the severity of PWS T1's phenotype.


Assuntos
Síndrome de Prader-Willi , Humanos , Camundongos , Animais , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/psicologia , Microglia , Proteínas de Transporte/genética , Fenótipo , Fagossomos , Proteínas Adaptadoras de Transdução de Sinal/genética
4.
Lipids Health Dis ; 23(1): 91, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539242

RESUMO

BACKGROUND: ß-Propeller protein-associated neurodegeneration (BPAN) is a genetic neurodegenerative disease caused by mutations in WDR45. The impairment of autophagy caused by WDR45 deficiency contributes to the pathogenesis of BPAN; however, the pathomechanism of this disease is largely unknown. Lipid dyshomeostasis is involved in neurogenerative diseases, but whether lipid metabolism is affected by Wdr45 deficiency and whether lipid dyshomeostasis contributes to the progression of BPAN are unclear. METHODS: We generated Wdr45 knockout SN4741 cell lines using CRISPR‒Cas9-mediated genome editing, then lipid droplets (LDs) were stained using BODIPY 493/503. Chaperone-mediated autophagy was determined by RT-qPCR and western blotting. The expression of fatty acid synthase (Fasn) was detected by western blot in the presence or absence of the lysosomal inhibitor NH4Cl and the CMA activator AR7. The interaction between Fasn and HSC70 was analyzed using coimmunoprecipitation (Co-IP) assay. Cell viability was measured by a CCK-8 kit after treatment with the Fasn inhibitor C75 or the CMA activator AR7. RESULTS: Deletion of Wdr45 impaired chaperone-mediated autophagy (CMA), thus leading to lipid droplet (LD) accumulation. Moreover, Fasn can be degraded via CMA, and that defective CMA leads to elevated Fasn, which promotes LD formation. LD accumulation is toxic to cells; however, cell viability was not rescued by Fasn inhibition or CMA activation. Inhibition of Fasn with a low concentration of C75 did not affect cell viability but decreases LD density. CONCLUSIONS: These results suggested that Fasn is essential for cell survival but that excessive Fasn leads to LD accumulation in Wdr45 knockout cells.


Assuntos
Autofagia Mediada por Chaperonas , Doenças Neurodegenerativas , Humanos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Gotículas Lipídicas/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Autofagia/genética , Ácido Graxo Sintases/metabolismo , Lipídeos
5.
Biochem Biophys Res Commun ; 709: 149820, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38547605

RESUMO

While the relationship between single receptor lymphocytes and cancer has been deeply researched, the origin and biological roles of dual receptor lymphocytes in tumor microenvironment (TME) remain largely unknown. And since nasopharyngeal carcinoma (NPC) is a type of cancer closely associated with immune infiltration, studying the TME of NPC holds particular significance. Utilizing single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA + TCR + BCR-seq), we analyzed data from 7 patients with NPC and 3 patients with nasopharyngeal lymphatic hyperplasia (NLH). In our research, it was firstly found that the presence of dual receptor lymphocytes in both the TME of NPC and the inflammatory environment of NLH. We also confirmed their clonal expansion, suggesting their potential involvement in the immune response. Subsequently, we further discovered the lineage and the pairing characteristics. It was found that the dual receptor lymphocytes in NPC and NLH mainly originate from memory cells, and the predominant pairing type for dual TCR was ß+α1+α2 and dual BCR was heavy+κ+λ. By further analyzing their gene expression, we compared the function of dual receptor cells with single receptor cells in the context of both NPC and NLH. This groundbreaking research has enhanced our comprehension of the features of dual-receptor cells and has contributed to a better understanding of the TME in NPC. By comparing with NLH, it illuminates part of the alterations in the process of malignant transformation in NPC. These findings present the potential to acquire improved diagnostic markers and treatment modalities.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Hiperplasia/patologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos B , Receptores de Antígenos de Linfócitos B/genética , Proteínas de Transporte/genética , Microambiente Tumoral/genética , Expressão Gênica , Análise de Célula Única
6.
Orphanet J Rare Dis ; 19(1): 121, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481258

RESUMO

BACKGROUND: Pathogenic variants of the IRF2BPL gene have been reported to cause neurodevelopmental disorders; however, studies focused on IRF2BPL in zebrafish are limited. RESULTS: We reported three probands diagnosed with developmental delay and epilepsy and investigated the role of IRF2BPL in neurodevelopmental disorders in zebrafish. The clinical and genetic characteristics of three patients with neurodevelopmental disorder with regression, abnormal movements, loss of speech and seizures (NEDAMSS) were collected. Three de novo variants (NM_024496.4: c.1171 C > T, p.Arg391Cys; c.1157 C > T, p.Thr386Met; and c.273_307del, p.Ala92Thrfs*29) were detected and classified as pathogenic or likely pathogenic according to ACMG guidelines. Zebrafish crispants with disruption of the ortholog gene irf2bpl demonstrated a reduced body length and spontaneous ictal-like and interictal-like discharges in an electrophysiology study. After their spasms were controlled, they gain some development improvements. CONCLUSION: We contribute two new pathogenic variants for IRF2BPL related developmental epileptic disorder which provided evidences for genetic counseling. In zebrafish model, we for the first time confirm that disruption of irf2bpl could introduce spontaneous electrographic seizures which mimics key phenotypes in human patients. Our follow-up results suggest that timely cessation of spasmodic seizures can improve the patient's neurodevelopment.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Peixe-Zebra/genética , Mutação , Epilepsia/genética , Epilepsia/diagnóstico , Convulsões , Transtornos do Neurodesenvolvimento/genética , Proteínas de Transporte/genética , Proteínas Nucleares/genética
7.
Cell Mol Life Sci ; 81(1): 142, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485770

RESUMO

Thioredoxin interacting protein (Txnip) is a stress-responsive factor regulating Trx1 for redox balance and involved in diverse cellular processes including proliferation, differentiation, apoptosis, inflammation, and metabolism. However, the biological role of Txnip function in stem cell pluripotency has yet to be investigated. Here, we reveal the novel functions of mouse Txnip in cellular reprogramming and differentiation onset by involving in glucose-mediated histone acetylation and the regulation of Oct4, which is a fundamental component of the molecular circuitry underlying pluripotency. During reprogramming or PSC differentiation process, cellular metabolic and chromatin remodeling occur in order to change its cellular fate. Txnip knockout promotes induced pluripotency but hinders initial differentiation by activating pluripotency factors and promoting glycolysis. This alteration affects the intracellular levels of acetyl-coA, a final product of enhanced glycolysis, resulting in sustained histone acetylation on active PSC gene regions. Moreover, Txnip directly interacts with Oct4, thereby repressing its activity and consequently deregulating Oct4 target gene transcriptions. Our work suggests that control of Txnip expression is crucial for cell fate transitions by modulating the entry and exit of pluripotency.


Assuntos
Reprogramação Celular , Histonas , Animais , Camundongos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
8.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474063

RESUMO

Hypertrophic cardiomyopathy (HCM) is a disease in which the myocardium of the heart becomes asymmetrically thickened, malformed, disordered, and loses its normal structure and function. Recent studies have demonstrated the significant involvement of inflammatory responses in HCM. However, the precise role of immune-related long non-coding RNAs (lncRNAs) in the pathogenesis of HCM remains unclear. In this study, we performed a comprehensive analysis of immune-related lncRNAs in HCM. First, transcriptomic RNA-Seq data from both HCM patients and healthy individuals (GSE180313) were reanalyzed thoroughly. Key HCM-related modules were identified using weighted gene co-expression network analysis (WGCNA). A screening for immune-related lncRNAs was conducted within the key modules using immune-related mRNA co-expression analysis. Based on lncRNA-mRNA pairs that exhibit shared regulatory microRNAs (miRNAs), we constructed a competing endogenous RNA (ceRNA) network, comprising 9 lncRNAs and 17 mRNAs that were significantly correlated. Among the 26 lncRNA-mRNA pairs, only the MIR210HG-BPIFC pair was verified by another HCM dataset (GSE130036) and the isoprenaline (ISO)-induced HCM cell model. Furthermore, knockdown of MIR210HG increased the regulatory miRNAs and decreased the mRNA expression of BPIFC correspondingly in AC16 cells. Additionally, the analysis of immune cell infiltration indicated that the MIR210HG-BPIFC pair was potentially involved in the infiltration of naïve CD4+ T cells and CD8+ T cells. Together, our findings indicate that the decreased expression of the lncRNA-mRNA pair MIR210HG-BPIFC was significantly correlated with the pathogenesis of the disease and may be involved in the immune cell infiltration in the mechanism of HCM.


Assuntos
Cardiomiopatia Hipertrófica , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Mensageiro/genética , RNA Longo não Codificante/genética , Linfócitos T CD8-Positivos/metabolismo , Redes Reguladoras de Genes , MicroRNAs/genética , Perfilação da Expressão Gênica , Proteínas de Transporte/genética
9.
Sci Rep ; 14(1): 6506, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499569

RESUMO

Pathogenic variants in WDR45 on chromosome Xp11 cause neurodegenerative disorder beta-propeller protein-associated neurodegeneration (BPAN). Currently, there is no effective therapy for BPAN. Here we report a 17-year-old female patient with BPAN and show that antisense oligonucleotide (ASO) was effective in vitro. The patient had developmental delay and later showed extrapyramidal signs since the age of 15 years. MRI findings showed iron deposition in the globus pallidus and substantia nigra on T2 MRI. Whole genome sequencing and RNA sequencing revealed generation of pseudoexon due to inclusion of intronic sequences triggered by an intronic variant that is remote from the exon-intron junction: WDR45 (OMIM #300526) chrX(GRCh37):g.48935143G > C, (NM_007075.4:c.235 + 159C > G). We recapitulated the exonization of intron sequences by a mini-gene assay and further sought antisense oligonucleotide that induce pseudoexon skipping using our recently developed, a dual fluorescent splicing reporter system that encodes two fluorescent proteins, mCherry, a transfection marker designed to facilitate evaluation of exon skipping and split eGFP, a splicing reaction marker. The results showed that the 24-base ASO was the strongest inducer of pseudoexon skipping. Our data presented here have provided supportive evidence for in vivo preclinical studies.


Assuntos
Oligonucleotídeos Antissenso , Splicing de RNA , Feminino , Humanos , Adolescente , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Mutação , Éxons/genética , Proteínas de Transporte/genética
10.
PLoS One ; 19(3): e0299400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502680

RESUMO

Abiotic stresses occur more often in combination than alone under regular field conditions limiting in more severe way crop production. Stress recognition in plants primarily occurs in the plasma membrane, modification of which is necessary to maintain homeostasis in response to it. It is known that lipid transport proteins (ns-LTPs) participate in modification of the lipidome of cell membranes. Representative of this group, ns-LTP2.8, may be involved in the reaction to abiotic stress of germinating barley plants by mediating the intracellular transport of hydrophobic particles, such as lipids, helping to maintain homeostasis. The ns-LTP2.8 protein was selected for analysis due to its ability to transport not only linear hydrophobic molecules but also compounds with a more complex spatial structure. Moreover, ns-LTP2.8 has been qualified as a member of pathogenesis-related proteins, which makes it particularly important in relation to its high allergenic potential. This paper demonstrates for the first time the influence of various abiotic stresses acting separately as well as in their combinations on the change in the ns-LTP2.8 transcript, ns-LTP2.8 protein and total soluble protein content in the embryonal axes of germinating spring barley genotypes with different ns-LTP2.8 allelic forms and stress tolerance. Tissue localization of ns-LTP2.8 transcript as well as ns-LTP2.8 protein were also examined. Although the impact of abiotic stresses on the regulation of gene transcription and translation processes remains not fully recognized, in this work we managed to demonstrate different impact on applied stresses on the fundamental cellular processes in very little studied tissue of the embryonal axis of barley.


Assuntos
Hordeum , Hordeum/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Genótipo , Estresse Fisiológico/genética
11.
Hum Genomics ; 18(1): 29, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520002

RESUMO

Chromosomal structural rearrangements consist of anomalies in genomic architecture that may or may not be associated with genetic material gain and loss. Evaluating the precise breakpoint is crucial from a diagnostic point of view, highlighting possible gene disruption and addressing to appropriate genotype-phenotype association. Structural rearrangements can either occur randomly within the genome or present with a recurrence, mainly due to peculiar genomic features of the surrounding regions. We report about three non-related individuals, harboring chromosomal structural rearrangements interrupting SETBP1, leading to gene haploinsufficiency. Two out of them resulted negative to Chromosomal Microarray Analysis (CMA), being the rearrangement balanced at a microarray resolution. The third one, presenting with a complex three-chromosome rearrangement, had been previously diagnosed with SETBP1 haploinsufficiency due to a partial gene deletion at one of the chromosomal breakpoints. We thoroughly characterized the rearrangements by means of Optical Genome Mapping (OGM) and Whole Genome Sequencing (WGS), providing details about the involved sequences and the underlying mechanisms. We propose structural variants as a recurrent event in SETBP1 haploinsufficiency, which may be overlooked by laboratory routine genomic analyses (CMA and Whole Exome Sequencing) or only partially determined when associated with genomic losses at breakpoints. We finally introduce a possible role of SETBP1 in a Noonan-like phenotype.


Assuntos
Aberrações Cromossômicas , Haploinsuficiência , Humanos , Haploinsuficiência/genética , Rearranjo Gênico , Cromossomos , Sequenciamento Completo do Genoma/métodos , Proteínas de Transporte/genética , Proteínas Nucleares/genética
12.
Hypertension ; 81(5): 1167-1177, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38497230

RESUMO

BACKGROUND: The mTOR (mechanistic target of rapamycin) is an essential regulator of fundamental biological processes. mTOR forms 2 distinct complexes, mTORC1 (mTOR complex 1) when it binds with RAPTOR (Regulatory-associated Protein of mTOR) and mTORC2 (mTOR complex 2) when it associates with RICTOR (Rapamycin-insesitive companion of mTOR). Due to the previous link between the mTOR pathway, aldosterone, and blood pressure (BP), we anticipated that variants in the mTOR complex might be associated with salt-sensitive BP. METHODS: BP and other parameters were assessed after a one-week liberal Na+ (200 mmol/d) and a one-week restricted Na+ (10 mmol/d) diet in 608 White subjects from the Hypertensive Pathotype cohort, single-nucleotide variants in MTOR, RPTOR, and RICTOR genes were obtained for candidate genes analyses. RESULTS: The analysis revealed a significant association between a single nucleotide variants within the RPTOR gene and BP. Individuals carrying the RPTOR rs9901846 homozygous risk allele (AA) and heterozygous risk allele (GA) exhibited a 5 mm Hg increase in systolic BP on a liberal diet compared with nonrisk allele individuals (GG), but only in women. This single nucleotide variants effect was more pronounced on the restricted diet and present in both sexes, with AA carriers having a 9 mm Hg increase and GA carriers having a 5 mm Hg increase in systolic BP compared with GG. Interestingly, there were no significant associations between MTOR or RICTOR gene variants and BP. CONCLUSIONS: The RPTOR gene variation is associated with elevated BP in White participants, regardless of salt intake, specifically in females.


Assuntos
Pressão Sanguínea , Hipertensão , Proteína Regulatória Associada a mTOR , Cloreto de Sódio na Dieta , Feminino , Humanos , Masculino , Proteínas de Transporte/genética , Hipertensão/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Nucleotídeos/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Sirolimo , Cloreto de Sódio na Dieta/metabolismo , Serina-Treonina Quinases TOR/metabolismo , População Branca
13.
Int J Food Microbiol ; 416: 110684, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513545

RESUMO

Urease operon is highly conserved within the species Streptococcus thermophilus and urease-negative strains are rare in nature. S. thermophilus MIMO1, isolated from commercial yogurt, was previously characterized as urease-positive Ni-dependent strain. Beside a mutation in ureQ, coding for a nickel ABC transporter permease, the strain MIMO1 showed a mutation in ureE gene which code for a metallochaperone involved in Ni delivery to the urease catalytic site. The single base mutation in ureE determined a substitution of Asp29 with Asn29 in the metallochaperone in a conserved protein region not involved in the catalytic activity. With the aim to investigate the role Asp29vs Asn29 substitution in UreE on the urease activity of S. thermophilus, ureE gene of the reference strain DSM 20617T (ureEDSM20617) was replaced by ureE gene of strain MIMO1 (ureEMIMO1) to obtain the recombinant ES3. In-gel detection of urease activity revealed that the substitution of Asp29 with Asn29 in UreE resulted in a higher stability of the enzyme complexes. Moreover, the recombinant ES3 showed higher level of urease activity compared to the wildtype without any detectable increase in the expression level of ureC gene, thus highlighting the role of UreE not only in Ni assembly but also on the level of urease activity. During the growth in milk, the recombinant ES3 showed an anticipated urease activity compared to the wildtype, and analogous milk fermentation performance. The overall data obtained by comparing urease-positive and urease-negative strains/mutants confirmed that urease activity strongly impacts on the milk fermentation process and specifically on the yield of the homolactic fermentation.


Assuntos
Streptococcus thermophilus , Urease , Animais , Urease/genética , Streptococcus thermophilus/metabolismo , Metalochaperonas/metabolismo , Proteínas de Transporte/genética , Níquel/metabolismo , Hidrólise , Leite/metabolismo , Ureia , Fermentação , Proteínas de Bactérias/genética
14.
Clin Epigenetics ; 16(1): 38, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431614

RESUMO

BACKGROUND: Large-scale cohort and epidemiological studies suggest that PTSD confers risk for dementia in later life but the biological mechanisms underlying this association remain unknown. This study examined this question by assessing the influences of PTSD, APOE ε4 genotypes, DNA methylation, and other variables on the age- and dementia-associated biomarkers Aß40, Aß42, GFAP, NfL, and pTau-181 measured in plasma. Our primary hypothesis was that PTSD would be associated with elevated levels of these markers. METHODS: Analyses were based on data from a PTSD-enriched cohort of 849 individuals. We began by performing factor analyses of the biomarkers, the results of which identified a two-factor solution. Drawing from the ATN research framework, we termed the first factor, defined by Aß40 and Aß42, "Factor A" and the second factor, defined by GFAP, NfL and pTau-181, "Factor TN." Next, we performed epigenome-wide association analyses (EWAS) of the two-factor scores. Finally, using structural equation modeling (SEM), we evaluated (a) the influence of PTSD, age, APOE ε4 genotype and other covariates on levels of the ATN factors, and (b) tested the mediating influence of the EWAS-significant DNAm loci on these associations. RESULTS: The Factor A EWAS identified one significant locus, cg13053408, in FANCD2OS. The Factor TN analysis identified 3 EWAS-significant associations: cg26033520 near ASCC1, cg23156469 in FAM20B, and cg15356923 in FAM19A4. The SEM showed age to be related to both factors, more so with Factor TN (ß = 0.581, p < 0.001) than Factor A (ß = 0.330, p < 0.001). Genotype-determined African ancestry was associated with lower Factor A (ß = 0.196, p < 0.001). Contrary to our primary hypothesis, we found a modest negative bivariate correlation between PTSD and the TN factor scores (r = - 0.133, p < 0.001) attributable primarily to reduced levels of GFAP (r = - 0.128, p < 0.001). CONCLUSIONS: This study identified novel epigenetic associations with ATN biomarkers and demonstrated robust age and ancestral associations that will be essential to consider in future efforts to develop the clinical applications of these tests. The association between PTSD and reduced GFAP, which has been reported previously, warrants further investigation.


Assuntos
Doença de Alzheimer , Demência , Transtornos de Estresse Pós-Traumáticos , Humanos , Epigenoma , Metilação de DNA , Apolipoproteína E4/genética , Transtornos de Estresse Pós-Traumáticos/genética , Biomarcadores , Demência/genética , Doença de Alzheimer/genética , Proteínas de Transporte/genética
15.
Redox Biol ; 71: 103103, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471282

RESUMO

Although some cohort studies have indicated a close association between diabetes and HCC, the underlying mechanism about the contribution of diabetes to HCC progression remains largely unknown. In the study, we applied a novel HCC model in SD rat with diabetes and a series of high glucose-stimulated cell experiments to explore the effect of a high glucose environment on HCC metastasis and its relevant mechanism. Our results uncovered a novel regulatory mechanism by which nuclear translocation of metabolic enzyme PKM2 mediated high glucose-promoted HCC metastasis. Specifically, high glucose-increased PKM2 nuclear translocation downregulates chemerin expression through the redox protein TRX1, and then strengthens immunosuppressive environment to promote HCC metastasis. To the best of our knowledge, this is the first report to elucidate the great contribution of a high glucose environment to HCC metastasis from a new perspective of enhancing the immunosuppressive microenvironment. Simultaneously, this work also highlights a previously unidentified non-metabolic role of PKM2 and opens a novel avenue for cross research and intervention for individuals with HCC and comorbid diabetes.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus , Neoplasias Hepáticas , Animais , Humanos , Ratos , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Glucose , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ratos Sprague-Dawley , 60667 , Microambiente Tumoral
16.
Gene ; 910: 148321, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428621

RESUMO

Infection with human papillomavirus (HPV) is a major risk factor for head and neck squamous cell carcinoma (HNSCC). The objective of this study is to investigate the gene expression profiles and signaling pathways that are specific to HPV-positive HNSCC (HPV+ HNSCC). Moreover, a competing endogenous RNA (ceRNA) network analysis was utilized to identify the core gene of HPV+ HNSCC and potential targeted therapeutic drugs. Transcriptome sequencing analysis identified 3,253 coding RNAs and 3,903 non-coding RNAs (ncRNAs) that exhibited preferentially expressed in HPV+ HNSCC. Four key signaling pathways were selected through pathway enrichment analysis. By combining ceRNA network and protein-protein interaction (PPI) network topology analysis, RNA Polymerase II Associated Protein 2 (RPAP2), which also exhibited high expression in HPV+ HNSCC based on the TCGA database, was identified as the hub gene. Gene set enrichment analysis (GSEA) results revealed RPAP2's involvement in various signaling pathways, encompassing basal transcription factors, ubiquitin-mediated proteolysis, adherens junction, other glycan degradation, ATP-binding cassette (ABC) transporters, and oglycan biosynthesis. Five potential small molecule targeted drugs (enzastaurin, brequinar, talinolol, phenylbutazone, and afuresertib) were identified using the cMAP database, with enzastaurin showing the highest affinity for RPAP2. Cellular functional experiments confirmed the inhibitory effect of enzastaurin on cell viability of HPV+ HNSCC and RPAP2 expression levels. Additionally, enzastaurin treatment suppressed the expression levels of the top-ranked long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA) in the ceRNA network. This study based on the ceRNA network provides valuable insights into the molecular mechanisms and potential therapeutic strategies for HPV+ HNSCC, and provide theoretical basis for the exploration of HPV+ HNSCC biomarkers and the development of targeted drugs.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Infecções por Papillomavirus , RNA Longo não Codificante , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Transcriptoma/genética , 60414 , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Papillomavirus/genética , Perfilação da Expressão Gênica , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Proteínas de Transporte/genética
17.
Elife ; 122024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38391183

RESUMO

Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis, and SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1-BRCT5 domain. Topbp1B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal events of early prophase I, including synapsis and SB formation. Specific ATR-dependent events are disrupted, including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1B5/B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non-canonical role for the ATR-TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.


Assuntos
Infertilidade Masculina , Meiose , Animais , Humanos , Masculino , Camundongos , Alelos , Proteínas de Transporte/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Infertilidade Masculina/genética , Proteínas Nucleares/genética , Cromossomos Sexuais
18.
ACS Synth Biol ; 13(2): 669-682, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38317378

RESUMO

Protein degron tags have proven to be uniquely useful for the characterization of gene function. Degrons can mediate quick depletion, usually within minutes, of a protein of interest, allowing researchers to characterize cellular responses to the loss of function. To develop a general-purpose degron tool in Escherichia coli, we sought to build upon a previously characterized system of SspB-dependent inducible protein degradation. For this, we created a family of expression vectors containing a destabilized allele of SspB, capable of a rapid and nearly perfect "off-to-on" induction response. Using this system, we demonstrated excellent control over several DNA metabolism enzymes. However, other substrates did not respond to degron tagging in such an ideal manner, indicating the apparent limitations of SspB-dependent systems. Several degron-tagged proteins were degraded too slowly to be completely depleted during active growth, whereas others appeared to be completely refractory to degron-promoted degradation. Thus, only a minority of our, admittedly biased, selection of degron substrates proved to be amenable to efficient SspB-catalyzed degradation. We also uncovered an apparent stalling and/or disengagement of ClpXP from a degron-tagged allele of beta-galactosidase (beta-gal). While a degron-containing fusion peptide attached to the carboxy-terminus of beta-gal was degraded quantitatively, no reductions in beta-gal activity or concentration were detected, demonstrating an apparently novel mechanism of protease resistance. We conclude that substrate-dependent effects of the SspB system present a continued challenge to the widespread adoption of this degron system. For substrates that prove to be degradable, we provide a series of titratable SspB-expression vehicles.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte/genética , Proteólise , 60652 , Adenosina Trifosfatases/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo
19.
J Biol Chem ; 300(3): 105726, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325741

RESUMO

Hyperlipidemia predisposes individuals to cardiometabolic diseases, the most common cause of global mortality. Microsomal triglyceride transfer protein (MTP) transfers multiple lipids and is essential for the assembly of apolipoprotein B-containing lipoproteins. MTP inhibition lowers plasma lipids but causes lipid retention in the liver and intestine. Previous studies suggested two lipid transfer domains in MTP and that specific inhibition of triglyceride (TG) and not phospholipid (PL) transfer can lower plasma lipids without significant tissue lipid accumulation. However, how MTP transfers different lipids and the domains involved in these activities are unknown. Here, we tested a hypothesis that two different ß-sandwich domains in MTP transfer TG and PL. Mutagenesis of charged amino acids in ß2-sandwich had no effect on PL transfer activity indicating that they are not critical. In contrast, amino acids with bulky hydrophobic side chains in ß1-sandwich were critical for both TG and PL transfer activities. Substitutions of these residues with smaller hydrophobic side chains or positive charges reduced, whereas negatively charged side chains severely attenuated MTP lipid transfer activities. These studies point to a common lipid transfer domain for TG and PL in MTP that is enriched with bulky hydrophobic amino acids. Furthermore, we observed a strong correlation in different MTP mutants with respect to loss of both the lipid transfer activities, again implicating a common binding site for TG and PL in MTP. We propose that targeting of areas other than the identified common lipid transfer domain might reduce plasma lipids without causing cellular lipid retention.


Assuntos
Proteínas de Transporte , Interações Hidrofóbicas e Hidrofílicas , Fosfolipídeos , Triglicerídeos , Humanos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Apolipoproteínas B/química , Apolipoproteínas B/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Fosfolipídeos/sangue , Fosfolipídeos/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Domínios Proteicos , Mutação , Relação Estrutura-Atividade , Sítios de Ligação
20.
J Cell Biochem ; 125(4): e30534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358025

RESUMO

Missense mutations in the DNA binding domain of p53 are observed frequently in esophageal squamous cell carcinoma (ESCC). Recent studies have revealed the potentially oncogenic transcriptional networks regulated by mutant p53 proteins. However, majority of these studies have focused on common "hotspot" p53 mutations while rarer mutations are poorly characterized. In this study, we report the characterization of rare, "non-hotspot" p53 mutations from ESCC. In vitro tumorigenic assays performed following ectopic-expression of certain "non-hotspot" mutant p53 proteins caused enhancement of oncogenic properties in squamous carcinoma cell lines. Genome-wide transcript profiling of ESCC tumor samples stratified for p53 status, revealed several genes exhibiting elevated transcript levels in tumors harboring mutant p53. Of these, ARF6, C1QBP, and TRIM23 were studied further. Reverse transcription-quantitative PCR (RT-qPCR) performed on RNA isolated from ESCC tumors revealed significant correlation of TP53 transcript levels with those of the three target genes. Ectopic expression of wild-type and several mutant p53 forms followed by RT-qPCR, chromatin affinity-purification (ChAP), and promoter-luciferase assays indicated the exclusive recruitment of p53 mutants-P190T and P278L, to the target genes leading to the activation of expression. Several functional assays following knockdown of the target genes revealed a significant suppression of tumorigenicity in squamous carcinoma cell lines. Rescue experiments confirmed the specificity of the knockdown. The tumorigenic effects of the genes were confirmed in nude mice xenograft assays. This study has therefore identified novel oncogenic targets of "non-hotspot" mutant p53 proteins relevant for ESCC besides validating the functional heterogeneity of the spectrum of tumor-specific p53 mutations.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Camundongos , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Esofágicas/patologia , Camundongos Nus , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Proteínas de Ligação ao GTP/genética , Proteínas de Transporte/genética , Proteínas Mitocondriais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...